Extremal Betti Numbers and Applications to Monomial Ideals

نویسندگان

  • Dave Bayer Hara Charalambous
  • Sorin Popescu
چکیده

Recall that the (Mumford-Castelnuovo) regularity of M is the least integer ρ such that for each i all free generators of Fi lie in degree ≤ i + ρ, that is βi,j = 0, for j > i + ρ. In terms of Macaulay [Mac] regularity is the number of rows in the diagram produced by the “betti” command. A Betti number βi,j 6= 0 will be called extremal if βl,r = 0 for all l ≥ i and r ≥ j + 1, that is if βi,j is the nonzero top left “corner” in a block of zeroes in the Macaulay “betti” diagram. In other words, extremal Betti numbers account for “notches” in the shape of the minimal free resolution and one of them computes the regularity. In this sense, extremal Betti numbers can be seen as a refinement of the notion of Mumford-Castelnuovo regularity. In the first part of this note we connect the extremal Betti numbers of an arbitrary submodule of a free S-module with those of its generic initial module. In the second part, which can be read independently of the first, we relate extremal multigraded Betti numbers in the minimal resolution of a square free monomial ideal with those of the monomial ideal corresponding to the Alexander dual simplicial complex. Our techniques give also a simple geometric proof of a more precise version of a recent result of Terai [Te97] (see also [FT97] for a homological reformulation and related results), generalizing Eagon and Reiner’s theorem [ER96] that a StanleyReisner ring is Cohen-Macaulay if and only if the homogeneous ideal corresponding to the Alexander dual simplicial complex has a linear resolution. We are grateful to David Eisenbud for useful discussions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Splittings of Monomial Ideals

We provide some new conditions under which the graded Betti numbers of a monomial ideal can be computed in terms of the graded Betti numbers of smaller ideals, thus complementing Eliahou and Kervaire’s splitting approach. As applications, we show that edge ideals of graphs are splittable, and we provide an iterative method for computing the Betti numbers of the cover ideals of Cohen-Macaulay bi...

متن کامل

ar X iv : 0 80 7 . 21 85 v 1 [ m at h . A C ] 1 4 Ju l 2 00 8 SPLITTINGS OF MONOMIAL IDEALS

We provide some new conditions under which the graded Betti numbers of a mono-mial ideal can be computed in terms of the graded Betti numbers of smaller ideals, thus complementing Eliahou and Kervaire's splitting approach. As applications, we show that edge ideals of graphs are splittable, and we provide an iterative method for computing the Betti numbers of the cover ideals of Cohen-Macaulay b...

متن کامل

Optimal Betti Numbers of Forest Ideals

We prove a tight lower bound on the algebraic Betti numbers of tree and forest ideals and an upper bound on certain graded Betti numbers of squarefree monomial ideals.

متن کامل

Betti Numbers of Monomial Ideals and Shifted Skew Shapes

We present two new problems on lower bounds for Betti numbers of the minimal free resolution for monomial ideals generated in a fixed degree. The first concerns any such ideal and bounds the total Betti numbers, while the second concerns ideals that are quadratic and bihomogeneous with respect to two variable sets, but gives a more finely graded lower bound. These problems are solved for certai...

متن کامل

Componentwise Linear Ideals with Minimal or Maximal Betti Numbers

We characterize componentwise linear monomial ideals with minimal Taylor resolution and consider the lower bound for the Betti numbers of componentwise linear ideals. INTRODUCTION Let S = K[x1, . . . ,xn] denote the polynomial ring in n variables over a field K with each degxi = 1. Let I be a monomial ideal of S and G(I) = {u1, . . . ,us} its unique minimal system of monomial generators. The Ta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998